

# MUROS DE LADRILLOS HUECOS CERAMICOS QUE CUMPLEN CON LA LEY 13059 DE LA PROV DE BS. AS.

- 1. Introducción
- 2. Ventajas del muro sandwich
- 3. Ejecución del muro sandwich en paredes de cerramiento
- 4. Ejecución del muro sandwich en paredes portantes
- 5. Detalles
- 6. PLANILLAS exigidas por la Ley 13.059 de la Prov. de Bs. As. y Dto Reglamentario 1030



#### 1- Introducción

El presente informe trata de algunas soluciones de muros construidos con ladrillos cerámicos que cumplen con los requisitos de la Ley 13059.

Se propone un "Muro Sandwich" que consiste en dos paredes de ladrillos cerámicos (que llamaremos "hojas") de 8 cm y 12 cm de espesor con un aislante térmico en su interior de aprox 2,0 cm de espesor. En total, incluyendo revoques, hacen un muro de 26 cm (Ver Fig 1). El aislante propuesto es Espuma de Polietileno (debido a que combina buena aislación térmica y

El aislante propuesto es Espuma de Polietileno (debido a que combina buena aislación térmica y baja permeabilidad al vapor de agua). Podrán utilizarse otros aislantes pero se deberá previamente evaluar el riesgo de condensación intersticial.

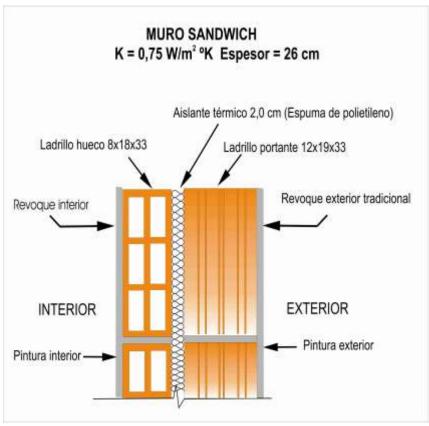



Fig 1

Para el caso de utilizar muros portantes se deberá verificar su comportamiento estructural

# 2. Ventajas del Muro Sandwich

Extensos ensayos, investigaciones y evidencias empíricas de esta forma constructiva han concluido que este tipo de muro es una de las mejores soluciones constructivas existentes.

#### 2-1. Aislación Térmica

Cumple con las exigencias de la Ley 13.059 de la Prov. de Bs. As. y Dto reglamentario 1030/12

#### 2-2. Resistencia a la Humedad y paso del agua de lluvia

La hoja exterior es la que sufre las inclemencias del tiempo y que incluso puede sufrir filtraciones por el agua de lluvia, sin embargo la humedad no puede llegar a la pared interior debido a que se encuentra con la aislación térmica de espuma de polietileno que además es impermeable al agua resultando que la pared interior permanecerá seca aún cuando la exterior se haya saturado.



De esta manera se logra una doble barrera hidrófuga

| TEMPERATURAS EXTERIORES DE DISEÑO |           |                   |  |  |  |  |
|-----------------------------------|-----------|-------------------|--|--|--|--|
| Localidad                         | TDMN (ºC) | Kadm<br>(W/m² ºC) |  |  |  |  |
| Coronel Suarez                    | -7,7      | 0,75              |  |  |  |  |
| Tandil                            | -6,6      | 0,78              |  |  |  |  |
| Pigué                             | -6,4      | 0,78              |  |  |  |  |
| Laprida                           | -6,1      | 0,79              |  |  |  |  |
| Bahia Blanca                      | -5,6      | 0,81              |  |  |  |  |
| Benito Juarez                     | -5,5      | 0,81              |  |  |  |  |
| Pehuajó                           | -5,2      | 0,81              |  |  |  |  |
| Junin                             | -5,0      | 0,83              |  |  |  |  |
| El Palomar                        | -4,5      | 0,85              |  |  |  |  |
| Pergamino                         | -4,4      | 0,85              |  |  |  |  |
| Tres Arroyos                      | -4,4      | 0,85              |  |  |  |  |
| Mar del Plata                     | -4,4      | 0,85              |  |  |  |  |
| Nueve de Julio                    | -3,8      | 0,88              |  |  |  |  |
| Ezeiza                            | -3,5      | 0,89              |  |  |  |  |
| Don Torcuato                      | -2,7      | 0,93              |  |  |  |  |
| La Plata                          | -2,5      | 0,93              |  |  |  |  |
| San Fernado                       | -2,3      | 0,93              |  |  |  |  |
| San Miguel                        | -2,2      | 0,94              |  |  |  |  |
| Punta Indio                       | -1,9      | 0,96              |  |  |  |  |

Fig 2

#### 2-3. Aislación acústica

Este tipo de muros posee además una excelente aislación acústica.

Al actuar cada una de las hojas de manera independiente las vibraciones que recibe una hoja no se transmiten a la otra como es el caso de los muros dobles vinculados por conectores metálicos. Complementariamente el aislante térmico contribuye a amortiguar las ondas sonoras.

#### 2-4. Menor riesgo de fisuración

La hoja exterior es la que sufre todo tipo de acciones: Por ejemplo pueden ocurrir cambios bruscos de temperatura que ocasionen contracciones y dilataciones, cambios de volumen por humedad y movimientos estructurales producidos por cargas, sin embargo todo ello no se refleja en la hoja interior, pues la misma está desligada y funciona en forma independiente de la hoja exterior.

Debido a que la hoja exterior es la parte más expuesta a los agentes externos se recomienda que la misma sea la de mayor espesor.

Una hoja exterior de poco espesor tiene poca resistencia mecánica, y puede llegar a sufrir cambios originados por los agentes climáticos y mecánicos que podrían ocasionar fisuras en su superficie. El muro exterior experimentará mayor movimiento que el interior.

# 3. Ejecución del muro sandwich en paredes de cerramiento.

En primer lugar se puede construir indistintamente la hoja interior o exterior perfectamente alineada y aplomada. (\*)



Posteriormente mientras se construye la otra hoja se van colocando las planchas de espuma de polietileno cuidando se que no caiga mortero en la zona del aislante térmico.

Las planchas de espuma de polietileno deberán estar unidas entre si mediante una cinta adhesiva impermeable o sistema equivalente que asegure su hermeticidad.

(\*) Acerca de como construir cada una de las hojas sugerimos consultar nuestra Ficha Técnica № 2 "Manual de colocación de cerámica roja"

# 4. Ejecución del muro sandwich en paredes portantes

El procedimiento es igual al anterior salvo que en lugar de utilizar ladrillos huecos de cerramiento en la hoja exterior se utilizarán bloques portantes. Es probable que en algunos casos los bloques deban ser de 18 cm de espesor por razones estructurales. Al respecto se deberá seguir las instrucciones del Reglamento CIRSOC 501-E

En este tipo de muros la hoja exterior será la que reciba las cargas del edificio y la que se construirá en primer término. Las cargas deberán apoyar en una viga de encadenado que será la encargada de distribuirlas uniformemente. (Ver Fig 3)

Posteriormente se construirá la hoja de 8 cm de espesor.

La losa no deberá apoyar sobre la hoja interior, para ello debe quedar una pequeña luz entre en ambas que luego se rellenará con un mortero pobre.

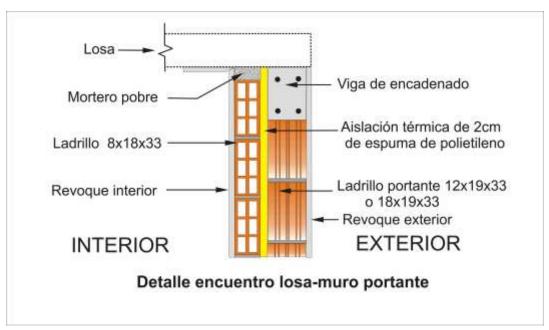



Fig 3

#### 5. Detalles

#### 5-1. Aberturas

Para el cumplimiento de los requisitos de la Ley 13059 se necesitan aberturas de alta prestación que requieren vidrios dobles (DVH) y marcos de aluminio con ruptura del puente térmico, PVC o madera de grueso espesor.

Este tipo de aberturas son instaladas por sus fabricantes. El albañil solo deberá preparar previamente el vano y colocar el premarco si el sistema de instalación así lo requiere. Como hay



distintas variantes según en tipo de abertura y fabricante, en todos los casos se deberá consultar previamente con el proveedor de aberturas.

En nuestro país se acostumbra a colocar las aberturas a filo interior de la pared interior que en nuestro caso significará sobre el tabique de ladrillos huecos de 8 cm de espesor En todos los casos las jambas deberían estar cerradas a fin de proveer un buen soporte para fijar las aberturas y revoques. El mortero que rodea la ventana conviene que sea impermeable. En la figura 4 se representa un esquema que deberá adaptarse de acuerdo a las características de cada fabricante de aberturas.

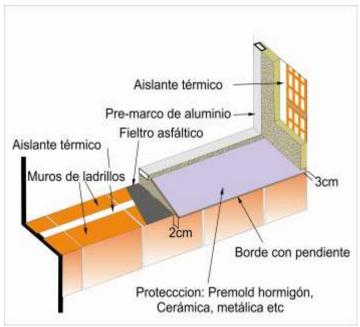



Fig 4

#### 5-2. Antepecho y alféizar

**5-2-1. Antepecho:** en la hilada inmediata inferior al antepecho es conveniente poner una varilla de 4 o 6 mm de diámetro tanto en la hoja exterior como en la interior. Ver figura 5

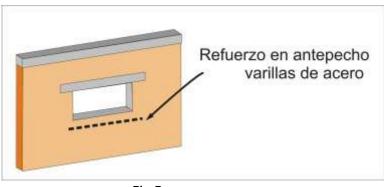



Fig 5

**5-2-2. Alféizar**: La unión entre el muro y la carpintería es propensa a la aparición de filtraciones de agua. Debe evitarse especialmente el paso del agua a la zona donde se encuentra la aislación térmica para ello se recomienda colocar en el alféizar una protección que puede ser metálica,



premoldeado de hormigón, baldosas cerámicas esmaltadas etc. con una pendiente aproximada del 20%.

También es necesario que la superficie del alféizar penetre al menos 3cm en las jambas y vuele al menos 2cm de la pared. (Ver Fig 4)

El mortero de asiento debe ser hidrófugo.

#### 5-3. Capa de aislación hidrófuga horizontal y vertical

A fin de evitar que la humedad del terreno pase al interior de la vivienda se debe hacer una capa impermeable tanto en la hoja exterior como en la interior que esté en contacto con el suelo.

Se emplea para este fin: concreto hidrófugo, membranas o algún material adecuado de acuerdo a las instrucciones del fabricante.

Este detalle es uno de los más importantes de la ejecución de la mampostería su costo es bajo y la ejecución sencilla. Si no se hace esta impermeabilización resultarán viviendas húmedas y su arreglo resultará muy caro una vez finalizada la obra.

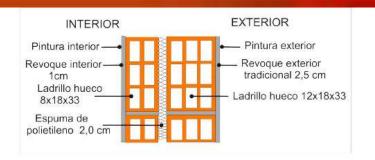
#### **5-4. Revoques:** Se emplearán revoques tradicionales.

Del lado interior del muro no se debe utilizar películas de polietileno revestidas con un delgado revoque (Que disimula a las mismas) pues producirá ambientes poco confortables. Esta solución es errónea porque si bien evita la condensación intersticial produce ambientes similares a los de vivir dentro de una "bolsita de polietileno", la película de polietileno provocará un rápido aumento de la humedad interior generado por el uso humano, creando ambientes sofocantes y propensos a la aparición de condensaciones superficiales.

Los revoques y revestimientos exteriores a base de polímeros sintéticos si bien son impermeables al paso del agua de lluvia generalmente también lo son al paso del vapor de agua produciendo condensaciones intersticiales. En caso utilizarse se deberá hacer la correspondiente verificación a la condensación intersticial. Los muros deben respirar

**5-5. Pinturas:** La permeabilidad al vapor de agua de las pinturas y revestimientos juega un papel muy importante en lo referente a la condensación intersticial, es por ello que deberá elegirse cuidadosamente el tipo de pintura y/o revestimiento a emplear tanto en el interior como en el exterior del muro y hacer la correspondiente verificación a la condensación intersticial.

Para el caso de nuestro ejemplo hemos considerado el uso de pinturas tradicionales al latex.


# 6. PLANILLAS exigidas por la Ley 13.059 de la Prov. de Bs. As. y Dto Reglamentario 1030

A continuación se detallan las planillas que exige la Ley para los muros descriptos. Todos los casos incluyen revoques tradicionales y pintura al látex en ambas caras.

6-1. Muro de Cerramiento: Hoja interior de ladrillo hueco de 8 cm de espesor + Aislación térmica de espuma de polietileno de 2 cm + Hoja exterior de ladrillo hueco de 12 cm de espesor. Válido para toda la Prov. de Bs. As., excepto Cnel Suarez

#### **PLANTILLAS:**

6-1-1:



# Verificación de Cumplimiento de Kmáx Adm NORMA IRAM 11605 Norma IRAM 11601 (1996) .

Métodos de Cálculo PropiedadesTérmicas de los componentes

| CALCULO DE I | LA TRANSMITANCIA T | ERMICA     |  |
|--------------|--------------------|------------|--|
| -            |                    |            |  |
| Muro         |                    | 51         |  |
| Invierno     | Flujo de calor .   | Horizontal |  |
|              | Muro               |            |  |

| Capa del elemento constructivo   | е      | λ                                       | R       | densidad | peso/m2 |
|----------------------------------|--------|-----------------------------------------|---------|----------|---------|
|                                  | m      | W/m °K                                  | m2 ºK/W | kg/m3    | kg/m2   |
| Resistencia superficial interior |        |                                         | 0.130   |          | 12      |
| Yeso                             | 0.0100 | 0.40                                    | 0.025   | 900      | 9       |
| Ladrillo hueco 8x18x33           | 0.0800 | *************************************** | 0.230   | 750      | 60      |
| Espuma de Polietileno            | 0.0200 | 0.04                                    | 0.500   | 35       | 1       |
| Ladrillo hueco 12x18x33          | 0.1200 |                                         | 0.360   | 750      | 90      |
| Revoque impermeable              | 0.0050 | 1.16                                    | 0.004   | 2000     | 10      |
| Revoque Exterior                 | 0.0200 | 1.16                                    | 0.017   | 2000     | 40      |
| Resistencia superficial exterior |        |                                         | 0.040   |          |         |
| TOTAL                            | 0.26   |                                         | 1.307   |          | 210     |

| Transmitancia térmica del componente (W/m2 °K) K= | 0.77 | W/m2 °K | Invierno |
|---------------------------------------------------|------|---------|----------|
|---------------------------------------------------|------|---------|----------|

| Norma IRAM 11601  | CALCULO DE LA TRANSMITANCIA TERMICA |                  |            |  |  |
|-------------------|-------------------------------------|------------------|------------|--|--|
| PROYECTO          |                                     |                  |            |  |  |
| ELEMENTO          | Muro                                |                  |            |  |  |
| Epoca del año     | Verano                              | Flujo de calor . | Horizontal |  |  |
| Zona bioambiental |                                     | .0731            | •          |  |  |

| Capa del elemento constructivo   | е      | λ      | R       | densidad | peso/m2 |
|----------------------------------|--------|--------|---------|----------|---------|
|                                  | m      | W/m °K | m2 ºK/W | kg/m3    | kg/m2   |
| Resistencia superficial interior |        |        | 0.130   |          |         |
| Yeso                             | 0.0100 | 0.40   | 0.025   | 900      | 9       |
| Ladrillo hueco 8x18x33           | 0.0800 | 0.00   | 0.230   | 750      | 60      |
| Espuma de Polietileno            | 0.0200 | 0.04   | 0.500   | 35       | 1       |
| Ladrillo hueco 12x18x33          | 0.1200 |        | 0.360   | 750      | 90      |
| Revoque impermeable              | 0.0050 | 1.16   | 0.004   | 2000     | 10      |
| Revogue Exterior                 | 0.0200 | 1.16   | 0.017   | 2000     | 40      |
| Resistencia superficial exterior | ĵ.     | Ĺ      | 0.040   |          |         |
| TOTAL                            | 0.26   |        | 1.307   |          | 210     |

| Transmitancia térmica del componente (W/m2 °K) K= | 0.77 | W/m2 °K | Verano |
|---------------------------------------------------|------|---------|--------|
|---------------------------------------------------|------|---------|--------|

# Norma IRAM 11605 (1996) .

#### Valores Máximos de Transmitancia Térmica

| Resumen de los valores calculados s/ IRAM 11 | 601                                               |           | Invierno | Verano |         |
|----------------------------------------------|---------------------------------------------------|-----------|----------|--------|---------|
| Transmitancia térmica del compo              | Transmitancia térmica del componente (W/m2 °K) K= |           |          |        | W/m2 °K |
| Exigencia de IRAM 11605, (1996) para         | ANDIL 7                                           | TDMN=     | -7.7     | °C     |         |
| De tabla 1, Kadm para condición              | de Invierno                                       | , Nivel B |          |        |         |
| Muros                                        | 0.78                                              | W/m2 °K   | l        |        |         |
| En Verano para Kadm = 1.25 W/                | m2 \K                                             |           | 1        |        |         |

Se verifica que los valores K del muro son menores que los máximos admisibles por lo tanto cumple IRAM 11605, nivel B.



# 6-1-2:

# Norma IRAM 11625 y 11630 .

# Muros

Ubicación : TANDIL . Pcia Bs As . TDMN = -6.6 °C

| Temperatura interior de diseño= (°C) | 18  |               |
|--------------------------------------|-----|---------------|
| Humedad Relativa Interior            | 59% | IRAM 11625/30 |

| Temperatura exterior de diseño = (°C) | -6.6 | IRAM 11603                               |
|---------------------------------------|------|------------------------------------------|
| Humedad Relativa Exterior             | 90%  | 3000 10.00000000000000000000000000000000 |

 $\tau = Rsi \Delta t / Rt$ 

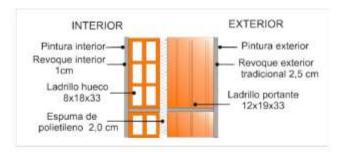
|                          | t              | = RSI Z      | At / PCI           |         |       |        |         |         |
|--------------------------|----------------|--------------|--------------------|---------|-------|--------|---------|---------|
| IRAM 11625<br>IRAM 11630 | Rsi =<br>Rsi = | 0.17<br>0.34 | m2 °K/W<br>m2 °K/W | Arista  | S-    |        | 11625   | 11630   |
|                          |                |              |                    |         | е     | λ      | R       | R       |
| Res                      | sistencia térm | nica de M    | URO                | 1000 h  | m     | W/m °K | m2 °K/W | m2 °K/W |
|                          | R              | esistencia   | superficial in     | terior  | 1     | O 2000 | 0.170   | 0.340   |
|                          | Y              | eso          | 2577.              |         | 0.010 | 0.40   | 0.025   | 0.025   |
|                          | La             | drillo hue   | co 8x18x33         |         | 0.000 |        | 0.230   | 0.230   |
|                          | E              | spuma de     | Polietileno        |         | 0.020 | 0.04   | 0.500   | 0.500   |
|                          | La             | drillo hue   | co 12x18x33        |         | 0.180 |        | 0.360   | 0.360   |
|                          | R              | evoque in    | permeable          |         | 0.005 | 1.16   | 0.004   | 0.004   |
|                          | R              | evoque E     | xterior            |         | 0.020 | 1.16   | 0.017   | 0.017   |
|                          | R              | esistencia   | superficial ex     | xterior |       |        | 0.040   | 0.040   |
|                          | 2/             |              | 33.57              |         |       | Rt=    | 1.35    | 1.52    |

| IRAM 11625                                          | IRAM 11630                                          |
|-----------------------------------------------------|-----------------------------------------------------|
| Rt = 1.35 m2 %/W                                    | Rt = 1.52 m2 °K/W                                   |
| $\Delta t$ = 24.6 °C                                | Δt= 24.6 °C                                         |
| τ = 3.11 °C                                         | $\tau = 5.52$ °C                                    |
| La temperatura superficial interior del cerramiento | La temperatura superficial interior del cerramiento |
| θi= 18°C -3.11= 14.89 °C                            | θi= 18°C -5.52= 12.48 °C                            |
| La temperatura de rocio                             | La temperatura de rocio                             |
| tr= 9.9 °C                                          | tr= 9.9 °C                                          |
| $\theta$ i > tr                                     | θi > tr                                             |
| No existe riesgo de condensación superficial        | No existe riesgo de condensación superficial        |
| verifica IRAM 11625.                                | verifica IRAM 11630.                                |



#### 6-1-3:




TANDILIh 8 12 ISOx-20mm-8+12-noP xlsx

6-2 Muro Portante 12cm: Hoja interior de ladrillo hueco de 8 cm de espesor + Aislación térmica de espuma de polietileno de 2 cm + Hoja exterior de ladrillo hueco portante de 12 cm de espesor Válido para toda la Prov. de Bs. As.



#### **PLANTILLAS:**

#### 6-2-1:



#### Verificación de Cumplimiento de Kmáx Adm NORMA IRAM 11625 Norma IRAM 11601 (1996) .

Métodos de Cálculo PropiedadesTérmicas de los componentes

| CALCULO DE I | LA TRANSMITANCIA T | ERMICA                                  |  |  |
|--------------|--------------------|-----------------------------------------|--|--|
|              |                    | 100000000000000000000000000000000000000 |  |  |
| Muro         |                    |                                         |  |  |
| Invierno     | Flujo de calor.    | Horizontal                              |  |  |
|              | Muro               |                                         |  |  |

| Capa del elemento constructivo   | e        | λ      | R      | densidad | peso/m2 |
|----------------------------------|----------|--------|--------|----------|---------|
|                                  | m        | W/m °K | m2 %/W | kg/m3    | kg/m2   |
| Resistencia superficial interior |          |        | 0.130  | - 10 - 2 | 2000    |
| Yeso                             | 0.0100   | 0.40   | 0.025  | 900      | 9       |
| Ladrillo hueco 8x18x33           | 0.0800   |        | 0.230  | 750      | 60      |
| Espuma de Polietileno            | 0.0200   | 0.04   | 0.500  | 35       | 1       |
| Bloque Cerámico 18x19x33         | 0.1800   | b      | 0.460  | 750      | 135     |
| Revogue impermeable              | 0.0050   | 1.16   | 0.004  | 2000     | 10      |
| Revogue Exterior                 | 0.0200   | 1.16   | 0.017  | 2000     | 40      |
| Resistencia superficial exterior | A Second | 6      | 0.040  | 0        | L       |
| TOTAL                            | 0.32     |        | 1,407  |          | 255     |

| Transmitancia térmica del componente (W/m2 °K) K= | 0.71 | W/m2 *K | Invierno |
|---------------------------------------------------|------|---------|----------|

| Norma IRAM 11601  | CALCULO DE LA | TRANSMITANCIA TE | RMICA     |  |  |
|-------------------|---------------|------------------|-----------|--|--|
| PROYECTO          |               |                  |           |  |  |
| ELEMENTO          | Muro          |                  |           |  |  |
| Epoca del año     | Verano        | Flujo de calor . | Honzontal |  |  |
| Zona bioambiental |               |                  |           |  |  |

| Capa del elemento constructivo   | е      | λ         | R      | densidad | peso/m2 |
|----------------------------------|--------|-----------|--------|----------|---------|
|                                  | m      | Wim "K    | m2 %/W | kg/m3    | kg/m2   |
| Resistencia superficial interior |        |           | 0.130  |          |         |
| Yeso                             | 0.0100 | 0.40      | 0.025  | 900      | 9       |
| Ladrillo hueco 8x18x33           | 0.0800 | 0.00      | 0.230  | 750      | 60      |
| Espurna de Polietileno           | 0.0200 | 0.04      | 0.500  | 35       | 1.      |
| Bloque Cerámico 18x19x33         | 0.1800 | S 0.000 M | 0.460  | 750      | 135     |
| Revogue impermeable              | 0.0050 | 1.16      | 0.004  | 2000     | 10      |
| Revogue Exterior                 | 0.0200 | 1.16      | 0.017  | 2000     | 40      |
| Resistencia superficial exterior |        |           | 0.040  |          |         |
| TOTAL                            | 0.32   |           | 1.407  | - 8      | 255     |

| Transmitancia térmica del componente (W/m2 °K): K= | 0.71 | W/m2 *K | Verano |
|----------------------------------------------------|------|---------|--------|

### Norma IRAM 11605 (1996).

# Valores Máximos de Transmitancia Térmica

| Resumen de l | los valores calculados s/ IRA/                    | VI 11601         |                                                   | Invierno | Verano |      |         |
|--------------|---------------------------------------------------|------------------|---------------------------------------------------|----------|--------|------|---------|
|              | Transmitancia térmica del componente (W/m2 *K) K= |                  | Transmitancia térmica del componente (W/m2 °K) K= |          | 0.71   | 0.71 | W/m2 *K |
| Exigencia de | IRAM 11605, (1996) para                           | Cnel Suar        | ez TDMN=                                          | -7.7     | °C     |      |         |
|              | De tabla 1, Kadm para condi                       | ción de Invierno | , Nivel B                                         | NO.2     |        |      |         |
|              | Muros                                             | 0.75             | W/m2 *K                                           |          |        |      |         |
|              | En Verano para Kadm = 1.25                        | 5 W/m2 \K        |                                                   |          |        |      |         |

Se verifica que los valores K del muro son menores que los máximos admisibles por lo tanto cumple IRAM 11605, nivel B.



# 6-2-2:

# Norma IRAM 11625 y 11630 .

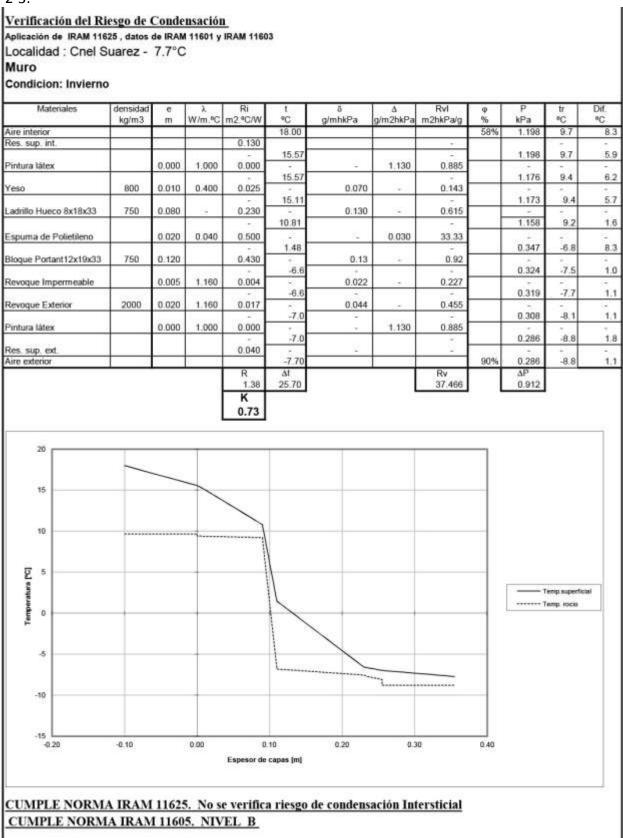
# Muros

Ubicación : Cnel Suarez . Pcia Bs As . TDMN = -7.7 °C

| Temperatura interior de diseño | = (°C) | 18  |               |
|--------------------------------|--------|-----|---------------|
| Humedad Relativa Interior      | ,      | 58% | IRAM 11625/30 |

| Temperatura exterior de diseño | = (°C) | -7.7 | IRAM 11603 |
|--------------------------------|--------|------|------------|
| Humedad Relativa Exterior      |        | 90%  |            |

 $\tau = Rsi \Delta t / Rt$ 


IRAM 11625 Rsi = 0.17 m2 %/W IRAM 11630 Rsi = 0.34 m2 %/W Arista

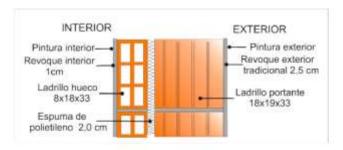
|         | Rsi = 0.34 m2 °K/W Arist         | a     |        | 11625   | 11630   |
|---------|----------------------------------|-------|--------|---------|---------|
|         |                                  | е     | λ      | R       | R       |
| Resist  | encia térmica de MURO            | m     | W/m *K | m2 °K/W | m2 ºK/W |
| 9000000 | Resistencia superficial interior | 3900  |        | 0.170   | 0.340   |
|         | Yeso                             | 0.010 | 0.40   | 0.025   | 0.025   |
|         | Ladrillo hueco 8x18x33           | 0.000 |        | 0.230   | 0.230   |
|         | Espuma de Polietileno            | 0.020 | 0.04   | 0.500   | 0.500   |
|         | Bloque Cerámico 12x19x33         | 0.180 |        | 0.430   | 0.430   |
|         | Revoque impermeable              | 0.005 | 1.16   | 0.004   | 0.004   |
|         | Revogue Exterior                 | 0.020 | 1.16   | 0.017   | 0.017   |
|         | Resistencia superficial exterior |       |        | 0.040   | 0.040   |
|         | : <del>3</del>                   |       | Rt=    | 1.42    | 1.59    |

| IRAM 11625                                          | IRAM 11630                                          |
|-----------------------------------------------------|-----------------------------------------------------|
| Rt = 1.42 m2 %/W                                    | Rt = 1.59 m2 %/W                                    |
| Δt= 25.7 °C                                         | Δt= 25.7 °C                                         |
| τ = 3.08 °C                                         | τ = 5.51 °C                                         |
| La temperatura superficial interior del cerramiento | La temperatura superficial interior del cerramiento |
| θi= 18°C -3.02°C: 14.92 °C                          | θi= 18°C -5.51°C: 12.49 °C                          |
| La temperatura de rocío                             | La temperatura de rocio                             |
| tr= 9.7 °C                                          | tr= 9.7 °C                                          |
| θi > tr                                             | θi > tr                                             |
| No existe riesgo de condensación superficial        | No existe riesgo de condensación superficial        |
| verifica IRAM 11625.                                | verifica IRAM 11630.                                |



#### 6-2-3:




E2-11630-ISOLAtex-20mm-8+12-BP- Cnel Suarez ok

6-3 Muro Portante 18cm: Hoja interior de ladrillo hueco de 8 cm de espesor + Aislación térmica de espuma de polietileno de 2 cm + Hoja exterior de ladrillo hueco portante de 18 cm de espesor Válido para toda la Prov. de Bs. As.



#### **PLANTILLAS:**

#### 6-3-1:



#### Verificación de Cumplimiento de Kmáx Adm NORMA IRAM 11625 Norma IRAM 11601 (1996) .

Métodos de Cálculo PropiedadesTérmicas de los componentes

| Norma IRAM 11601 | CALCULO DE I | LA TRANSMITANCIA | TERMICA    |  |  |  |
|------------------|--------------|------------------|------------|--|--|--|
| PROYECTO         | i soci       |                  |            |  |  |  |
| ELEMENTO         | Muro         | Muro             |            |  |  |  |
| Epoca del año    | Invierno     | Flujo de calor   | Horizontal |  |  |  |

| Capa del elemento constructivo   | e      | λ      | R       | densidad   | peso/m2 |
|----------------------------------|--------|--------|---------|------------|---------|
|                                  | m      | W/m *K | m2 *K/W | kg/m3      | kg/m2   |
| Resistencia superficial interior | - 12   |        | 0.130   | - constant | £       |
| Yeso                             | 0.0100 | 0.40   | 0.025   | 900        | 9       |
| Ladrillo hueco 8x18x33           | 0.0800 |        | 0.230   | 750        | 60      |
| Espuma de Polietileno            | 0.0200 | 0.04   | 0.500   | 35         | - 1     |
| Bloque Cerámico 18x19x33         | 0.1800 |        | 0.460   | 750        | 135     |
| Revoque impermeable              | 0.0050 | 1.16   | 0.004   | 2000       | 10      |
| Revoque Exterior                 | 0.0200 | 1,16   | 0.017   | 2000       | 40      |
| Resistencia superficial exterior |        |        | 0.040   |            |         |
| TOTAL                            | 0.32   | 1      | 1.407   |            | 255     |

| ACCUMANTAL AND ACCUMANTAL AND ACCUMANTAL AND ACCUMANTAL AND ACCUMANTAL AND ACCUMANTAL AND ACCUMANTAL ACCUMANTA |      |         |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------|
| Transmitancia térmica del componente (W/m2 *K) K=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.71 | W/m2 *K | Invierno |

| Norma IRAM 11601  | CALCULO DE LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRANSMITANCIA TEI | RMICA     |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|--|
| PROYECTO          | Maria de la companya della companya della companya della companya de la companya della companya |                   |           |  |
| ELEMENTO          | Muro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |           |  |
| Epoca del año     | Verano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flujo de calor .  | Horzontal |  |
| Zona bioambiental |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |           |  |

| Capa del elemento constructivo   | e      | λ<br>wm κ | R<br>m2*KW | densidad<br>kg/m3 | peso/m2<br>kg/m2 |
|----------------------------------|--------|-----------|------------|-------------------|------------------|
|                                  | m      |           |            |                   |                  |
| Resistencia superficial interior |        |           | 0.130      |                   |                  |
| Yeso                             | 0.0100 | 0.40      | 0.025      | 900               | 9                |
| Ladrillo hueco 8x18x33           | 0.0800 | 0.00      | 0.230      | 750               | 60               |
| Espuma de Polietileno            | 0.0200 | 0.04      | 0.500      | 35                | 1                |
| Bloque Cerámico 18x19x33         | 0.1800 | , AMON    | 0.460      | 750               | 135              |
| Revoque impermeable              | 0.0050 | 1.16      | 0.004      | 2000              | 10               |
| Revoque Exterior                 | 0.0200 | 1.16      | 0.017      | 2000              | 40               |
| Resistencia superficial exterior |        |           | 0.040      |                   |                  |
| TOTAL                            | 0.32   |           | 1.407      |                   | 255              |

| Transmitancia térmica del componente (W/m2 *K) K=   | 0.71 | W/m2 *K    | Morano |
|-----------------------------------------------------|------|------------|--------|
| transmitancia termica dei componente (**///iz K) K- | 0.71 | William P. | verano |

#### Norma IRAM 11605 (1996) .

#### Valores Máximos de Transmitancia Térmica

| Resumen de los valores calculados s/ IRAM 11601  Transmitancia térmica del componente (W/m2 *K) K= |                                                       |                  | Invierno  | Verano<br>0.71 | W/m2 *K |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|-----------|----------------|---------|--|
|                                                                                                    |                                                       |                  | 0.71      |                |         |  |
| Exigencia de                                                                                       | xigencia de IRAM 11605, (1996) para Cnel Suarez TDMN= |                  |           | -7.7           | °C      |  |
|                                                                                                    | De tabla 1, Kadm para cond                            | ición de Inviern | , Nivel B | 1              |         |  |
|                                                                                                    | Muros 0.75 Wm2 'K                                     |                  |           | ı              |         |  |
| En Verano para Kadm = 1.25 W/m2 \K                                                                 |                                                       |                  | 1         |                |         |  |

Se verifica que los valores K del muro son menores que los máximos admisibles por lo tanto cumple IRAM 11605, nivel B.



#### 6-3-2:

# Norma IRAM 11625 .

Verificación del riesgo de condensación superficial

#### Muros

Ubicación: Cnel Suarez. Pcia Bs As. TDMN = -7.7 °C

| Temperatura interior de diseño = (°C) | 18  | Si .       |
|---------------------------------------|-----|------------|
| Humedad Relativa Interior             | 58% | IRAM 11625 |

|                           | = (°C) | -7.7 | IRAM 11603 |
|---------------------------|--------|------|------------|
| Humedad Relativa Exterior |        | 90%  |            |

$$\tau = Rsi \Delta t / Rt$$

Iram 11625 Rsi = 11625 11630 0.17 m2 KW Rsi = λ Iram 11630 R R 0.34 arista m2 9K/W Resistencia térmica de MURO m W/m °K m2 °K/W m2 °K/W 0.170 0.340 Resistencia superficial interior Yeso 0.010 0.40 0.025 0.025 Ladrillo hueco 8x18x33 0.000 0.230 0.230 0.04 Espuma de Polietileno 0.020 0.500 0.500 0.180 0.460 0.460 Bloque Cerámico 18x19x33 Revoque impermeable 0.005 1.16 0.004 0.004 Revoque Exterior 0.020 1.16 0.017 0.017 Resistencia superficial exterior 0.040 0.040 Rt= 1.62 1.45

| IRAM 11625                                          | IRAM 11630                                          |
|-----------------------------------------------------|-----------------------------------------------------|
| Rt = 1.45 m2 *K/W                                   | Rt = 1.62 m2 %/W                                    |
| Δt= 25.7 °C                                         | Δt= 25.7 °C                                         |
| τ = 3.02 °C                                         | τ = 5.41 °C                                         |
| La temperatura superficial interior del cerramiento | La temperatura superficial interior del cerramiento |
| θi= 18°C -3.02°C: 14.98 °C                          | θi= 18°C -5.41°C: 12.59 °C                          |
| La temperatura de rocio                             | La temperatura de rocío                             |
| tr= 9.7 °C                                          | tr= 9.7 °C                                          |
| θi > tr                                             | $\theta_i > t_r$                                    |
| No existe riesgo de condensación superficial        | No existe riesgo de condensación superficial        |
| verifica IRAM 11625.                                | verifica IRAM 11630.                                |

# Cicer

#### 6-3-3:

Verificación del Riesgo de Condensación Aplicación de IRAM 11625, datos de IRAM 11601 y IRAM 11603 Localidad: Cnel Suarez - 7.7°C Muro Condicion: Invierno Materiales. Δ g/m2hkPa RvI densidad φ% W/m.ºC m2.ºC/W g/mhkPa aC. °C m2hkPa/g kPa °C kg/m3 m Aire interior 18.00 58% 1.198 9.7 8.3 0.130 Res. sup. int. 9.7 15.62 1,198 6.0 0.000 0.000 1.000 1.130 0.885 Pintura látex 6.2 9.4 15.62 1.176 0.025 800 0.010 0.400 0.070 0.143 9.4 5.8 15.17 1.173 750 0.080 0.230 0.615 Ladrillo Hueco 8x18x33 0.130 10.97 9.2 1.8 1.158 0.020 0.040 0.500 0.030 Espuma de Polietileno 33.33 8.3 -6.5 1.83 0.357 Bloque Portant18x19x33 750 0.180 0.460 0.13 1.38 -6.6 0.324 7.6 1.0 0.004 0.227 0.005 1.160 0.022 Revoque Impermeable -6.7 -7.7 1.1 0.318 Revoque Exterior 2000 0.020 1,160 0.017 0.044 0.455 -7.0 0.307 -8.1 1.1 0.000 0.885 Pintura látex 0.000 1.000 1.130 7.0 0.286 8.8 1.8 Res. sup. ext. Aire exterior 0.040 0.286 -7.70 -8.8 90% 25.70 0.912 K 0.71 20 15 10 [emperatura [10] - Temp superficial ----- Temp. rocks 0 -5 -10 0.00 0.20 -0.10 0.10 0.20 0.30 0.40 0.50

CUMPLE NORMA IRAM 11625. No se verifica riesgo de condensación Intersticial CUMPLE NORMA IRAM 11605. NIVEL B

Espesor de capas [m]

E1-11630-ISOLAtex-20mm-8+18BP- Cnel Suarez ok



#### Advertencia

Las propuestas indicadas en esta ficha técnica correspondan a nuestra mejor experiencia siendo solamente indicativas. Las mismas deberán ser constatadas por el profesional a cargo y ejecutadas por personal idóneo.. Para mayor información, comuníquese con nuestro Departamento de Asistencia Técnica.